The Effect of Mutation Subtypes on the Allele Frequency Spectrum and Population Genetics Inference

Kevin Liao¹, Jedidiah Carlson², Sebastian Zöllner^{1,3}

¹Department of Biostatistics, University of Michigan; ²Department of Computational Medicine and Bioinformatics, University of Michigan; ³Department of Psychiatry, University of Michigan

Contact

ksliao@umich.edu www.kliao12.github.io

Pop Gen Models Treat Sites as Interchangeable

- Current models treat mutations the same: A -> G the same as C -> T
- Evolution of sites differ due to unique mutation rates driven primarily by adjacent nucleotides (Carlson, 2018)
- Sites should not be treated the same and can be further differentiated by considering the local nucleotide context

Mutation	Base Downstream	Mutation Type	Base Upstream	Mutation Subtype
Subtype:	А	C->T	G	C_T.ACG

The Allele Frequency Spectrum Can Differ by Sites

- AFS is summary of genetic variation in a population that is commonly used for inference
- Current methods use all sites to form a single frequency spectrum
- Shape reflects forces such as natural selection and demographic history

1. Factors affecting the AFS

Problem: Signs of selection or demographic history in the overall AFS may be false signals caused simply by its composition of mutation subtypes

Aims

- What are the factors that affect the allele frequency spectrum at the motif level?
- 2. Are allele frequency spectrum-based tests of selection and demographic inference biased by failing to account for mutation subtypes?

Results

- Mutation rate heterogeneity and biased gene conversion affect the AFS at the motif level
- Local tests of selection have an inflated rate of false positives due to the local nucleotide composition in a region
- Demographic inference using the distinct AFS for each mutation subtype infers drastically different parameters

Conclusion

AFS-based inference and other population genetics models need to differentiate between sites!

A_G.CAT

Bipolar Research in Deep Genome and Epigenome Sequencing Study (BRIDGES)

3556 unrelated European individuals

1. Annotate each point mutation with its

3-mer mutation subtypes (MST)

MST and compare them by:

b) Tajimas D

windows

immediate adjacent nucleotides to form 96

Construct the genome-wide AFS for each

a) Ratio of singletons to doubletons

3. Compute Tajimas D using the local AFS and

the proportion of a single MST in 100kb

4. Fit an exponential growth model for each

mutation subtypes' AFS using DaDi

- Average coverage: 9.6x
- Total variants: 59,482,865

Mutation Rate Heterogeneity

Ratio of Singletons to Doubletons by ERV Mutation Rate for 96 MSTs cor = -0.842, $p = 2.2*10^{-16}$ Exclude C_T CpGs: cor = -0.351, p = 0.0006ERV Mutation Rate

primarily to adjacent nucleotides Sites with higher mutation rates (CpG -> TpG) have lower proportion of singletons

Mutation rates differ across subtypes due

Parallel singletons falsely counted as doubletons

Biased Gene Conversion (gBGC)

- Base mismatch repair process during recombination where C/G repairs more likely
- gBGC mimics selection on AFS and causes increase in intermediate frequency alleles or rare alleles
- Systematic higher ranks of D for A->G and lower ranks for C->A is consistent with gBGC

2. Effect of mutation subtypes on AFS-based inference **Tests of Selection Demographic Inference**

- Tajimas D uses AFS to test for local regions of selection
 - Compute D from AFS in local regions of genome
 - Regions with D falling in tails of empirical distribution are significant of selection

Problem: Could windows falsely fall in tails of Tajimas D empirical distribution simply by having more of a particular mutation subtype?

- Artificial negative correlation between proportion of a C_G subtype and D
- Windows with "high" proportion of C_G subtype have heavier left tail
- False signals of selection caused by having "high" proportion of C_G.CCG

• $\delta a \delta i$ uses AFS to infer demographic

- history
- Assuming an exponential growth model:
 - Uses diffusion approximation to estimate expected AFS
 - Infers ancestral effective population size and time since it started growing

Problem: Does demographic inference using the distinct AFS for each mutation subtype give varying results?

Ancestral Effective Population Size

Inferred time since ancestral population started growing and effective population size, showing drastic differences by subtype