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1 Introduction

1.1 Background

Educational performance is often used as a predictor of long-term economic success for students.
In 2006, Portugal performed worse than the rest of the Europe in measures of educational success.
Drop-out and failure rates in Portugal are comparably quite high among secondary school students.
(Eurostat, 2007). Compared to the European Union average of 15 percent, Portugal reported 40
percent drop out of secondary school students in 2006 (Cheng, 2017). According to Cortez and
Silva (2006), student performance in the core classes of Mathematics and Portuguese are key in
determining student achievement since they provide the fundamentals necessary in further subjects
such as physics and history.

The dataset comes from a study done by Cortez and Silva (2008), where they looked at student
achievement in secondary education of two Portuguese schools in the year 2005-2006. The two
schools are Escola Secundaria Mouzinho da Silveria (MS) and Escola Secundaria Gabriel Pereira
(GP), which are both located in the Alentejo region of Portugal. The data attributes include 395
students’ grades, demographic, social, and school related features. It was collected by using school
reports and questionnaires. Two datasets are available from the study regarding the performance
in two distinct subjects: Mathematics (mat) and Portuguese language (por). In Cortez and Silva
(2008), their analysis focused on prediction of future education scores utilizing machine learning
methods. Educational success in Mathematics and Portuguese was modeled in three ways: binary
classification of performance using pass/fall, five-level classification with I as very good performance
and V as insufficient performance, and regression with the numeric grade score as the outcome. They
tested four algorithms, decision trees, random forest, neural networks, and support vector machines,
in order to determine which model had the best predictive accuracy.

For the purpose of our project, we were primarily interested in the Mathematics subject score
trend. Our study differs from the previously published paper by Cortez and Silva because we are
interested in the student characteristics affecting their score trend, while their anlaysis focused
on developing models to predict future grades. Therefore, our analysis focused on implementing
statistical methods for longitudinal data.



1.2 Study Objectives

The scientific question that we are addressing is whether the change in grade period score in Math-
ematics over the course of secondary school differs between the following covariate values: 1) School
Attended (MS vs GP) 2) Gender 3) Romantic Partner Status 4) Health Status 5) Absences 6)
Parental Cohabitation. In addition, we also included and adjusted for student baseline characteris-
tics. Ultimately, We are interested in determining the effect of our covariates on the changes in the
educational success of students over time.

2 Methods

2.1 Model Specification

Our outcome of interest was grade score in mathematics. This variable is continuous, so we mod-
eled it using a linear mixed effects model. The model was fit to account for the correlation within
subjects between our outcomes: the three grades for each of the 395 students that were measured
throughout their secondary education. All other covariates of interest were captured at baseline and
only measured at the beginning of the study. Students and grade were treated as random effects,
while the remainder of the covariates are fixed effects in model.

Since we fit a mixed effects model with both random intercepts and slopes, we did not specify
a covariance structure for each subjects responses. Rather we assume that conditional on a sub-
jects random effects, their outcomes have constant variance and are assumed uncorrelated. Because
mixed effects model condition on each student’s initial grade, a correlation structure was effectively
induced through our model.

2.2 Testing for Random Effects

In order to determine whether we needed to include random effects in our model, we first fixed our
base model as specified below and fit the following three models.

1. A model with fixed effects only

2. A model with fixed effects and a random intercept

3. A model with fixed effects and both a random intercept and random slope

To formally test which random effects to include in our model, we used a likelihood ratio test,
because our three models are nested. To determine our p value for each test, we used the 50-50
mixture of χ2

1, χ
2
2 distributions as the null distribution.

2.3 Variable Selection

To eliminate unnecessary covariates from our model, we performed variable selection for our mean
model. The reason we decided to perform variable selection is to find the most parsimonious model.
By removing redundant parameters, we avoid any potential multi-collinearity and ensure degrees of
freedom are not wasted. To compare each of our models, Maximum likelihood (ML) estimation was
used instead of restricted maximum likelihood (REML) because we are comparing mean models.
Backward variable selection using AIC for model comparison was performed. We begin with our
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full model as specified below. At each step of the analysis, a variable was eliminated from the model
and AIC was used as the criteria to determine whether or not removing the variable improved
model fit. The variables in the base model were always kept and selection was done solely on the
interaction variables. The step function in the package lmerTest was used for variable selection. We
also verified our results to the package MuMIn, which shows the AIC of all specified models. The
covariates of interest included in the model are described in more detail in table 1.

Full Model
GScoreij = b0i + b1iGradeij + β0i + β1Gradeij + β2Schooli + β3RomPartneri + β4Healthi + β5Absencesi

+ β6ParCohabi + β7Genderi + β8Schooli ∗Gradeij + β9Genderi ∗Gradeij
+ β10Gradeij ∗RomPartneri + β11Gradeij ∗Healthi + β12Gradeij ∗Absencesi
+ β13Gradeij ∗ ParCohabi + εij

(1)

i = 1, 2, ...357 , j = 1, 2, 3

Base Model
GScoreij = b0i + b1iGradeij + β0i + β1Gradeij + β2Schooli + β3RomPartneri + β4Healthi + β5Absencesi

+ β6ParCohabi + β7Genderi + εij
(2)

i = 1, 2, ...357 , j = 1, 2, 3

Where bi ∼MVN2(0, G), ei ∼MVN3(0, Ri) and Ri = σ2ε I3

Table 1: Covariates of Interest
Type Variable Name Variable Type Description

Response G Score Numeric Secondary grade score

Covariate
Sex Binary (female/male)

School Binary School attended (MS/GP)
Pstatus Binary Parents cohabitation status (living together/apart)
Romantic Binary With a romantic relationship (yes/no)
Health Numeric Current Health Status

Absences Numeric Number of school absences

Table 1: Covariates of interest and description of data

2.4 Data Analysis

Statistical analyses were carried out using R version 3.5.1. The package mgcv was used to fit our
model.
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3 Results

3.1 Exploratory Analysis

Descriptive statistics of the covariates of interest were obtained (Table 1). Thirty-eight students
were excluded from our data-set since they did not report a grade from all three grading periods.
Therefore, our sample size used for our analysis was n = 319.

Table 2: Descriptive Statistics for the Covariates of Interest

Students math scores over their grades in secondary education were plotted using a spaghetti
plot (Figure 1). The mean trajectory line for all students, shown in orange, indicates a shallow
increase in mean grade score over time. However, looking by student we see high correlations
within individual students grade. In addition, there appears to be quite a bit of between-subject
heterogeneity as initial grades and how they change over time can very drastically.
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Figure 1: Spaghetti plots visualizing the 20 randomly sampled individuals’ response over time

3.2 Model Specification

Figure 1 shows that there was both within subject correlation and between subject heterogeneity
in our dataset which indicated a linear mixed model was appropriate. Since a mixed effects model
with random intercepts and slopes was fit, a covariance structure was induced and did not require
direct specification.

The model with both random slope and intercept performed better than the model with no random
effects and the model with only a random intercept (Table 3). To compare between nested mod-
els, we performed likelihood ratio tests. Testing models 1 and 2 at an α = 0.05 significance level,
we reject the null hypothesis and conclude that having a random intercept improves our model fit
(p < 0.001). Similarly, testing models 2 and 3 we also conclude that having both a random intercept
and random slope further improves our model fit (p < 0.001).

Table 3: Evaluation of Need for Random Effects
Model AIC BIC LogLik Test Likelihood Ratio P-value

1. No Random Effects 5453.0 5453.0 -2715.5
2. Random Intercept Only 4108.2 4167.9 -2042.1 1 vs. 2 1346.8 (1 vs. 2) <0.001

3. Random Intercept and Slope 4063.5 4138.1 -2016.7 2 vs. 3 50.7 (2 vs. 3) <0.001

Table 3: Evaluation of need for Random Effects through comparison of three models

3.3 Variable Selection

Variable selection kept the following variables: grade, school, romantic partner, health, absences,
parental cohabitation, gender, interaction between grade and school, and the interaction between
grade and absences. The AIC of the final model chosen was 4040.3.

Final Model

GScoreij = b0i + β0i + b1iGradeij + β1Gradeij + β2Schooli+ β3RomPartneri + β4Healthi + β5Absencesi

+ β6ParCohabi + β7Genderi + β8GradeijRomPartneri + β9GradeijAbsencesi + εij
(3)
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i = 1, 2, ...395 , j = 1, 2, 3

3.4 Data Analysis

The effect of each of the variables in the final model are reported in table 4. Two student charac-
teristics were found to affect trends in grades score: presence of a school and number of absences.

Table 4: Fixed Effects Model Results
Effect Value Std.Error DF t-value p-value

(Intercept) 12.11 0.68 711 17.80 0.0000
Grade 0.29 0.05 711 5.65 0.0000

School: MS -0.14 0.56 350 -0.25 0.8006
sex: Male 0.65 0.33 350 1.99 0.0472

Romantic: yes 0.15 0.36 350 0.43 0.6667
Health -0.22 0.12 350 -1.88 0.0610

Absences -0.03 0.02 350 -1.54 0.1244
Pstatus: Together -0.37 0.52 350 -0.71 0.4780
Grade:schoolMS -0.355102 0.12 711 -2.94 0.0034
XGrade:absences -0.02 0.005 -4.12 711 0.0000

Table 4: Fixed Effects Model Results

Figure 2 shows predicted mathematics score for different schools, showing the population trend
within each school, as well as trends for 20 selected subjects within each school. This plot shows
that the overall trends in scores are different between schools, and that students in GP have a
better outlook than students in MS, even adjusting for the other covariates. Because of the imbal-
ance in the number of students within each school, we also looked at a model adding school as a
another hierarchical cluster of random intercepts, allowing for different distributional assumptions
for students within each group. We found that this model increased both AIC and BIC, and the
residual and "qqnorm" plots did not indicate any evidence that the variances are different. Thus,
we assumed the structure is the same for students at each school.

Figure 2: Predicted Scores by School

Figure 3 shows predicted mathematics score for different numbers of absences, showing the
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population trend for each count, as well as trends for 5 selected subjects with that number of
absences. This plot shows how the overall trends in scores are different as the number of absences
increases.

Figure 3: Predicted Scores by Absences

4 Discussion and Conclusion

While student performance in Portugal secondary schools have improved over time, their failure
and drop out rates are still high compared to the rest of Europe (Cortez and Silva, 2008). Our
results show that an increase in number of absences is associated with decreased mathematics score.
The Ministry of Education in Portugal can work with parents and school administrators to come
up with strategies to decrease number of absences, such as creating incentives to promote school
attendance or developing outreach programs to teach about the importance of education.

Academic performance differences are evident between the two public secondary schools evalu-
ated using this dataset. This difference between school performance is not unexpected, because
higher mathematics score in Gabriel Pereria compared to Mousinho da Silveria has been reported
in a related analysis (Cheng, 2017). Cheng (2017) reported an urban/rural difference between the
two schools. Gabriel Pereria has students who come from mostly urban settings and are of higher
socio-economic status compared to Mousinho da Silveria (Cheng,2017).

A study looking at student performance in mathematics using a 2009 dataset found that the school
attended was the most predictive of mathematics score when looking at schools of differing size and
quality (Faria and Portela, 2016). The Ministry of Education should focus educational outreach
programs towards the schools where the need is greatest. There appears to be differing quality
in the education provided by school, so efforts should be made to improve educational quality at
schools which perform consistently lower than what is expected.

There are a few limitations of our analysis. For each student only three mathematics scores are
available, one for each year of secondary school. As a result, we are only capturing end of year per-
formance for each student. In addition, all variables were only measured at the final year and some
of the predictors such as, relationship status, parental cohabitation, absences, and health status
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may vary throughout schooling. Therefore, our analysis was a pseudo-longitudinal study because
grade scores and student characteristics were only recorded in the final year. As a result, potential
variation in time variant predictors were not accounted for.

There are several possible extensions to our study. Mathematics score could be measured multiple
times per year for each student. In addition, measuring relationship status, parental cohabitation,
absences, and health status each time mathematics score is measured would add additional com-
plexity to our model and may better identify factors that affect mathematics performance over
time. A possible extension to the current study would be including variables such as alcohol and
drug use, participation in extracurricular activities, and more to understand their effects on student
performance. In addition, if mathematics score is measured more than three times per student this
may warrant the use of splines and smooths in our model.

Overall, our project showed that number of absences and school attended has an effect on aca-
demic performance in mathematics over time for Portuguese students in the two schools studied.
Our analysis is an important first step in understanding student performance and can be used to
advise policy makers interested in improving educational outcomes in Portugal.
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