Estimating Effect Sizes and Polygenic Risk Scores

Biostat 666 3/29/21 Kevin Liao

About Me

- 4th year Biostatistics student working with Sebastian
 - Former Genome Science Training Program Trainee
- From Chapel Hill, NC
- Hobbies: Tennis, golf, painting
- Current Research
 - 1) Polygenic risk scores for admixed individuals
 - Genetic architecture of complex traits across diverse human populations

Lecture Outline

· Review: GWAS

- Estimating Effect Sizes
 - · Measures of association: Risk Ratio vs Odds Ratio
 - · LD confounding, Winner's Curse, Replication Studies
- Polygenic Risk Scores
 - · Popular Methods of Construction
 - Strengths and Pitfalls

Review: GWAS

Review: Complex Traits

- Early genetic studies focused on Mendelian diseases
 - Single gene diseases that follow mendelian inheritance patterns
- "One gene, one mutation, out outcome" Model
- · Well known monogenic diseases:

Disease	Type of Inheritance	Gene Responsible
Huntington's Disease	Autosomal Dominant	Huntingtin (HTT)
Cystic Fibrosis	Autosomal Recessive	CFTR
Sickle Cell Anemia	Autosomal Recessive	Beta Hemoglobin (HBB)

Review: Complex Traits

- Complex traits are traits influenced by many genes across the genome
 - Exp. Height, Type 2 Diabetes, Coronary Artery Disease, etc
- Studies of complex traits facilitated by sequencing technology
- Most commonly studied genetic variation are single nucleotide polymorphisms (SNPs)

Review: GWAS

- Genome wide association study (GWAS) used to study genetics of complex traits
- · Basic idea of GWAS
 - · 1) Collect sample of cases and controls for a trait
 - 2) Many loci across genome are genotyped/sequenced
 - 3) Associations tested by comparing frequency of alleles in cases and controls for each loci

Review: GWAS

Estimating Effect Sizes

Motivation

- GWAS allows framework to test SNPs for association with a phenotype
- Estimated effect sizes for each SNP provide insight into genetic architecture of disease
 - · Which variants truly affect the disease?
 - · Protective or Damaging?
 - · How much of the phenotypic variance does genetics explain?

Study Designs

Prospective Study

- Cohorts followed over time to see who develops outcome
- Forward in time

Retrospective Study

- · Outcome is established at start of study
- GWAS are almost always retrospective case control studies

Measure of association for GWAS

				Row totals
	Cases	Controls	Total	unknown b/c of
aA or AA	а	b	Unknown 1	case ctrl sampling
aa	С	d	Unknown 2	

- · Would like to know the relative risk:
 - · Risks easily interpretable: P(Disease)

$$RR = \frac{\Pr(Disease \mid genotype \ aA \ or \ AA)}{\Pr(Disease \mid genotype \ aa)} = \frac{a/Unknown_1}{c/Unknown_2}$$

 Can't get RR from retrospective case control study because you don't known denominator!

Measure of association for GWAS

- · Odds ratios used for GWAS instead
 - · Odds: Probability of event / Probability of no event

	Cases	Controls	Total
aA or AA	а	b	Unknown
aa	С	d	Unknown

Discussion: Why do the unknown row totals not matter?

$$OR = \frac{\Pr(Disease \mid genotype \; aA \; or \; AA) / \Pr(No \; disease \mid genotype \; aA \; or \; AA)}{\Pr(Disease \mid genotype \; aa) / \Pr(No \; disease \mid genotype \; aa)} = \frac{a/b}{c/d} = \frac{a*d}{b*c}$$

OR can approximate RR

 OR approximates RR when disease/health outcome is rare (i.e affecting < 10% in population)

data on all subjects

	Cases	Controls	Total	
Exposed	а	b	a+b	
Unexposed	С	d	c+d	
Total	a+c	b+d	a+b+c+d	

$$OR = \frac{a/b}{c/d} \approx \frac{\frac{a}{a+b}}{\frac{c}{c+d}} = RR$$

Approximation holds when a & c small

How to estimate effect sizes

- Logistic regression often used to estimate effect sizes instead
 - · Chi square test can't adjust for covariates

$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 G + \beta_2 X$$

where

 π is the probability of being affected, $\Pr({\rm Y=\ I})$

 $\log[\pi/(1-\pi)]$ - log odds of disease (logit)

G - genotype coded according to assumed model

X - other covariate (e.g., ancestry, age, gender, etc.)

How to estimate effect sizes

$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 G + \beta_2 X$$

Genotype Coding:

Model	aa	aΑ	AA
Dominant	0	I	1
Recessive	0	0	1
Additive/multiplicative	0	1	2
Co-dominant*	0	I	0
(genotypic)	0	0	1

- Under additive model (most common):
 - β_1 : change in log odds of disease for each additional minor allele
 - OR = e^{β_1} : odds of disease are increase by factor of X per each additional minor allele

Additional Factors when Estimating Effect Sizes

- · Confounding of effect sizes due to LD
- Proportion of variance explained
- Winner's Curse, Replication studies

Confounding of Effect Sizes due to LD

- Genotype arrays leverage LD to avoid genotyping all variants
 - Often tag variant genotyped rather than causal variant

 Estimated marginal effect size for tag SNP j will depend on any causal SNPs in LD with

Simulation Experiment

- Run GWAS simulation experiment with two SNPs for 1000 times
 - SNP1 causal with effect size $\lambda_1 = 0.2$ and MAF = 0.2
 - SNP2 not causal with effect size $\lambda_2=0$ and MAF = 0.4
 - LD between SNPs: $r_{12}^2 = 0.60$

Discussion: What do you see from simulation results?

Proportion of Variance Explained

Concepts, estimation and interpretation of SNPbased heritability

Jian Yang ☑, Jian Zeng, Michael E Goddard, Naomi R Wray & Peter M Visscher ☑

Decompose variance of phenotype

$$Y = \sum_{SNPS} x_j \beta_j + \epsilon$$

- Var(Y): Total phenotypic variance
- SNP-based heritability h² is proportion of variance explained (PVE) due to set of SNPs

$$h^2 = \frac{var(\sum_{SNPS} x_j \beta_j)}{var(v)}$$

Proportion of Variance Explained

Phenotypic variance explained for single SNP j:

Var
$$(x_j\beta_j)=2f_j(1-f_j){\beta_j}_{true}^2$$
Estimated using $\hat{\beta}_j$

- Impact of SNP j on PVE depends on:
 - Marginal effect size: β_i
 - Allele frequency: f_j

Winner's Curse

Significant associations likely stronger in GWAS sample than general population

	Stage 1			Stage 2				Nearby
SNP	f	feontrols	OR	f	f _{controls}	OR	P-value	Genes
rs12191877	.31	.14	2.79	.30	.15	2.64	<10-100	HLA-C
rs2082412	.86	.79	1.56	.85	.80	1.44	2x10 ⁻²⁸	IL12B
rs17727338	.09	.06	1.72	.09	.05	1.59	1x10 ⁻²⁰	TNIP1
rs20541	.83	.78	1.37	.83	.79	1.27	5x10 ⁻¹⁵	IL13
rs610604	.37	.32	1.28	.36	.32	1.19	9x10 ⁻¹²	TNFAIP3
rs2066808	.96	.93	1.68	.95	.93	1.34	1x10 ⁻⁹	IL23A
rs2201841	.35	.29	1.35	.32	.30	1.13	3x10 ⁻⁸	IL23R

Winner's Curse

- Caused by thresholding on statistical significance.
 - Significant associations may have effects overestimated in a particular sample due to chance
- Winner's curse effect "stronger" when power of discovery GWAS low
- Solution: Larger sample sizes or Meta Analysis

Replication Studies

- Gold standard to validate genetic association is replication in another sample
- Replication sample should be independent and drawn from same population as original GWAS

Discussion: Will replication sample sizes ideally be smaller or larger than discovery GWAS sample size?

Break Time!

Polygenic Risk Scores

What to do after GWAS?

- GWAS has estimated effect sizes and identified risk variants
- · Can we predict phenotypes using genetic information?

Reminder: Individual effect sizes small

Polygenic Risk Score

- Polygenic risk scores (PRS) aggregate information from multiple small effect variants genome wide into a single score
- Each individual has a unique genetic portfolio of risk variants

$$PRS = \sum_{i=1}^{n} eta_i G_i$$
 Typically use GWAS estimated effect size \hat{eta}

High Risk

Construction of Polygenic Risk Score

Discussion

Low Risk

Grad student Kevin has genetic data (~500,000 SNPs) for n=10,000 subjects and wants to make a PRS for disease X. He performs a GWAS for disease X to estimate effect sizes and makes a PRS using all 500,000 SNPs:

$$PRS = \sum \beta_i G_i$$

What's the problem?

How did Kevin mess up

- 1) Overfitting!
 - · Kevin estimated effect sizes and made PRS in same data
 - · Overfitting falsely improves PRS
- 2) Including non-risk variants!
 - · Only a handful of variants are true risk variants.
 - · Adding noise hurts PRS

Two Main Computational Frameworks

- 1) Shrinkage of β 's
 - · Clumping and Thresholding
 - Lassosum
- 2) Adjusting β 's for LD
 - LDpred

Solutions:

- 1) Overfitting!
 - Use external set of summary statistics for PRS
 - · Ensure no sample overlap
- 2) Including non-risk variants!
 - · Prune out variants in high LD
 - · Variable selection/Shrinkage

1) Clumping and Thresholding

Step 1: Clumping

- · Remove correlated SNPs
- Clumping Looks at most significant variants and removes nearby variants above some specified r^2

Step 2: Thresholding

- · Try multiple p-value thresholds with SNPs under retained
- · For each p-value threshold construct PRS and assess model fit
- Note: Thresholding effectively shrinks β 's to 0 for SNPs failing threshold

1) Clumping and Thresholding

- PRSice is popular software for Clumping and Thresholding
- Here, P_T : 0.29 gives best PRS

Discussion: What is a problem of clumping and thresholding?

Note: lassosum doesn't

use genotypes of your

data set

2) Lassosum

 Lassosum computes PRS using penalized regression (LASSO) on all summary statistics

· LASSO Overview:

• Normal linear regression: $y = XB + \epsilon$

•
$$f(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

· LASSO minimizes objective function:

•
$$f(\boldsymbol{\beta}) = (y - X\boldsymbol{\beta})^T (y - X\boldsymbol{\beta}) + 2\lambda ||\boldsymbol{\beta}||_1^1$$

• LASSO penalty provides shrinkage of β 's (even to 0)

2) Lassosum

· Lassosum objective function:

$$f(\boldsymbol{\beta}) = (y - X\boldsymbol{\beta})^T(y - X\boldsymbol{\beta}) + 2\lambda \big| |\boldsymbol{\beta}| \big|_1^1$$

$$= y^T y + \boldsymbol{\beta}^T X^T X \boldsymbol{\beta} - 2\boldsymbol{\beta}^T X^T y + 2\lambda \big| |\boldsymbol{\beta}| \big|_1^1$$

$$X^T X \text{ is LD matrix}$$
from external reference SNP and phenotype from external data

• β estimates from minimizing function used to compute PRS for target sample: $PRS = \sum \beta_{i,lasso} G_i$

3) LDpred

Am J Hum Genet, 2015 Oct 1; 97(4): 576–592.

Published online 2015 Oct 1. doi: 10.1016/j.ajhg.2015.09.001

PMCID: PMC4596916 PMID: 26430803

Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores

- LDpred is a Bayesian method that estimates posterior mean causal effect sizes given:
 - LD from an external reference panel
 - · Prior on genetic architecture of trait
- Adjusts each variant's marginal effect β for nearby variants in LD with

3) LDpred

Step 1: Compute LD Matrix using external reference panel

Step 2: Define prior on genetic architecture

Infinitesimal model:

 $\beta_i \sim_{iid} N(0, \frac{h_g^2}{M})$

 h_g^2 is SNP-based heritability estimated from effect sizes

Non-infinitesimal model:

$$eta_i \sim_{iid} \left\{ egin{aligned} N\left(0, rac{h_g^2}{Mp}
ight) & \text{with probability} \\ 0 & \text{with probability} & (1-p) \,, \end{aligned}
ight.$$

3) LDpred

Step 3: Estimate posterior effect sizes

Infinitesimal model:

 $E\left(eta^lig| ilde{eta}^l,D
ight)pprox\left(rac{M}{Nh_g^2}I+D_l
ight)^{-1} ilde{eta}^l.$

I D matrix

- Non-infinitesimal model:
 - Analytical expression for posterior mean hard. Uses MCMC Gibbs sampler instead

Step 4: Use posterior effect sizes to construct PRS

•
$$PRS = \sum \beta_{i,post} G_i$$

Evaluating PRS performance

Regression Model:

Phenotype =
$$\beta_0 + \beta_1 PRS + \beta Covariates$$

- 1) P-value for β_1 corresponding to null of no association
 - · Sensitive to sample size
- 2) Case control Separation
 - · T-test for difference in means

Evaluating PRS performance

- 3) R^2 metrics
 - Quantitative: R² is proportion of variance explained
 - Binary: Nagelkerke R²
 - Sensitive to proportion of cases in testing data
- 4) AUC Area under the curve
 - Prob that the PRS of a random case is larger than PRS of random control
 - Nice property that independent of proportion of cases

Evaluating PRS performance

5) Odds Ratio by PRS Quantiles

- · Construct quantiles for PRS
- Fit logistic regression using quantiles as predictor

$$=\beta_0+\beta_1 PRS_{quant2}+\cdots+\beta_{19} PRS_{quant20}$$

Pitfalls of PRS

- Most genetic studies done in Europeans
- Genotype-phenotype associates can differ across populations
 - · LD differences
 - Allele frequency differences
 - Unique environments

Pitfalls of PRS

Analysis of polygenic risk score usage and performance in diverse human population

A "0" South William A "0" South A Tables A "0" Sous Malate

A "Company" to the A South A Tables A "0" Sous Malate

A Company of the A South A Tables A South A Tables A South A So

African ancestry

Americas ancestry

East asian ancestry

Discussion: What do you notice when making PRS with different population GWAS?

Future of PRS

- · PRS methods development is active area of research
 - · Construction of PRS
 - Transferring PRS across populations
- Increase clinical utility of PRS
 - Currently PRS only used for a handful of traits (CAD, prostate cancer, breast cancer, etc)
 - Informing physicians and public education regarding interpretation

Overview

- · Measures of association for GWAS
- Factors to consider when estimating effect sizes
 - · LD confounding
 - Going from β to proportion of variance explained
 - · Winner's curse, replication studies
- Polygenic risk scores

Thanks!