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1 Introduction

1.1 Background

In recent years, bike sharing programs become more and more popular around

the world. Currently, over 500 cities have developed bike sharing systems and

in the US, 35 million trips were taken in 2017 [1]. One important reason for

these bike sharing programs to gain popularity is its convenience and flexibility.

To ensure the service quality of the bike sharing program, predicting the rental

bike demand is essential. However, the usage of rental bikes can be impacted by



a number of factors, especially the weather and seasonal factors. Investigating

the effects of those factors and accounting for them in making predictions will

help improve the service of bike sharing system and lower the operating cost.

1.2 Study Objectives

The objective of our project was to find factors that are significant for daily

rental bike demands using Bayesian analysis methods. We used a dataset

containing the daily count of rental bikes between years 2011 and 2012 from

the Capital bikeshare system in Washington DC [2,3]. We considered covari-

ates including month, weekday, holiday, weather, temperature, humidity, and

windspeed.

2 Models/Methods

2.1 Negative Binomial Regression

Our outcome of interest was the number of bikes rented on a given day and

therefore count data. We initially attempted to fit a Poisson regression model,

but after checking model diagnostics we noticed the variance was drastically

larger than the mean. To account for this overdispersion, we instead fit a

negative binomial regression model parameterized by NB(r, p) where r is the
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overdispersion parameter and p is the probability parameter for an event.

2.1.1 Prior Specification

Because we are performing a bayesian analysis, an important decision was

our choice of prior. We fit our model using the following 4 priors. For each

model specification, we set a uniform prior on the overdispersion parameter

r ∼ Unif(0, 50).

• Uninformative prior on β

βi ∼ N(0, 0.0001−1) (1)

• Uninformative prior on β with an uninformative prior on its variance

βi|σ2 ∼ N(0, σ2) σ2 ∼ Γ−1(0.0001, 0.0001) (2)

• BLASSO
βi|τ 2 ∼ DE(τ 2) τ 2 ∼ Γ−1(0.0001, 0.0001) (3)

• Spike and Slab

βi|γi ∼ (1− γi)N(0, c0
2) + γiN(0, c1

2) γi ∼ Ber(0.5) (4)
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3 Data Analysis

3.1 Choosing our Prior

We began by fitting our negative binomial with each of the four priors specified

earlier. Each model was fit in R using JAGS and MCMC sampling. For each

fitted model, we computed the DIC as shown in Table 1. DIC was then used

as our criteria comparison where the lowest model indicated the best model

fit. We found that surprisingly the uninformative Gaussian prior on β resulted

in the best model fit with DIC = 12689.91.

3.2 Variable Selection

Although the model using an uninformative prior on β resulted in the best

model fit, we instead used the spike and slab prior for the rest of our analysis.

We argue that although the spike and slab prior has a worse DIC, the DIC

compared between models were rather similar because the difference in DIC

was mainly caused by the increase in the gamma parameters for each corre-

sponding beta (discussed below). Most importantly, our primary objective

was to perform variable selection to determine the significant factors affecting

bike rentals and the spike and slab prior provides an efficient way to do so. By

considering the indicator variable γ in the spike and slab prior, if its posterior
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mean is greater than 0.5 we keep that covariate in our model. Essentially

we are using the posterior inclusion probability being greater than 0.5 as our

criterion for variable selection. Months 5, 6, 7, 9, 10, 11, weather situation 2,

3, temperature, and humidity were ultimately kept in our model following the

variable selection (Table 2).

3.3 Convergence Checking

To ensure the validity of our results, all four models were fit in JAGS with 3

MCMC chains using 102,000 samples. 2,000 samples are simply burn-in which

resulted in a default thinning interval of 100. The effective sample size in all

parameters in all models were greater than 1000. The convergence between

chains was close to perfect as most parameters had a Gelman Rubin statistic

less than 1.005 and all were less than 1.02. See Figure 1 for an illustrative and

typical example of our convergence result.

3.4 Model Fit Diagnostics

After comparing a few priors, we decided on the uninformative prior model

that seemed to fit the best, and verified if the model was adequate. Posterior

predictive checks were performed based on the mean statistics, since a gen-

eralized linear regression model (negative binomial in our case) is modeling
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the mean structure. For this uninformative prior model, the bayesian p−value

for the full model (all initial variables retained) and subset model (keeping all

significant variables from variable selection) are shown in Figure 2 and Figure

3 respectively. The model fit is indeed improved as the bayesian p−value be-

comes closer to 0.5 (change from 0.644 to 0.629) after removing insignificant

variables. This makes sense because we are avoiding model overfit.

4 Discussion

Using a Bayesian framework, we implemented a negative binomial regression

that identified months 5, 6, 7, 9, 10, 11, weather situation 2, 3, temperature,

and humidity as significant explanatory variables of bike demand. For our

regression parameters, we utilized a spike and slab prior that enabled efficient

variable selection by examining poster probabilities of inclusion. MCMC sam-

pling, running for 100,000 iterations and discarding the first 2000 as burn in,

was used to obtain the posterior distribution of each β and γ.

We note that month and weather Situation were categorical variables and

so reference cell coding was used. Compared to January we find May, Septem-

ber, October, and November have statistically significant higher rental counts.

Conversely, we find June and July have lower rental counts compared to Jan-
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uary. The reason for these trends is unclear as we would expect for rental

counts to be higher through late spring to early fall as the weather is nicer

compared to January.

For Weather Situation, we find that on misty days bike rental counts are

higher compared to clear days. In addition, for light rain we find that rental

counts are lower. This falls in line with expectations because on a misty day

people would be more tempted to ride a bike to get to their destination faster.

On the other hand, on a rainy day people will opt to use an umbrella and walk

instead of biking in the rain.

For temperature, we find that as the temperature increases bike rental

counts also increase. This is expected because as temperature increases from

cold weather people are more inclined to bike. In addition, as the weather

gets hot biking provides a more efficient means of transportation. Regarding

humidity, we find that as humidity increases rental counts decrease. This may

be because as humidity increases it’s more likely to rain and so when it does

people are less tempted to bike.

However, there are also limitations in our study. First, the dataset we

used contains only information from 2011 to 2012, which might be different

from the current situation considering the bike sharing systems are growing

and changing rapidly. Secondly, the covariates included in our study were
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mainly seasonal and weather factors, while there are many other variables

can influence the rental bike demands such as the road conditions. Therefore,

future studies based on more recent data with more variables are needed to

further validate our current results.

5 Tables and Figures

Table 1: DIC Comparison between different prior specifications
Model Description DIC

Uninformative Prior on Beta 12689.91
Uninformative Prior on Beta and Variance 12689.95

BLASSO 12693.75
Spike and Slab 12735.95

Table 2: Covariates and their Posterior Probability of Inclusion.

Covariate P (γ > 0.5)

Month 5, 6, 7, 9, 10, 11 0.536, 0.911, 0.757, 0.945, 0.999, 0.656
Weather Situation 2, 3 1.0, 1.0
Temperature 1.0
Humidity 1.0
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Figure 1: Gelman Rubin statistics and effective sample size of parameters from
selected model with uninformative prior on β for illustrating convergence.
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Figure 2: Plot of sampling distribution of the full model and Bayesian p−value
calculated based on mean statistics.

10 of 12



Figure 3: Plot of sampling distribution of the subset model and Bayesian
p−value calculated based on mean statistic.

11 of 12



References

[1] National Association of City Transportation Officials (2018). Bike Share

in the U.S.: 2017. Retrieved from URL: https://nacto.org/bike-share-

statistics-2017/

[2] Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning Repos-

itory [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,

School of Information and Computer Science.

[3] Fanaee-T, Hadi, and Gama, Joao, ’Event labeling combining en-

semble detectors and background knowledge’, Progress in Arti-

ficial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg,

[http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset].

12 of 12


